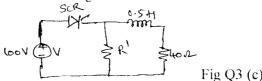
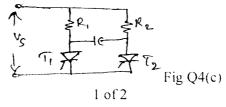
Fourth Semester B.E. Degree Examination, June/July 2017 Power Electronics

Time: 3 hrs. Max. Marks:100


Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A


- 1 a. List and explain the different types of power electronic converters. Show their I/O characteristics. (08 Marks)
 - b. What are the peripheral effects of power converters? (04 Marks)
 - c. What is the necessity of base drive control high power transistor? Explain proportional base and anti-saturation control. (08 Marks)
- 2 a. With necessary waveforms. Explain the switching performance of power BJT. (07 Marks)
 - b. With relevant diagrams, discuss the methods of providing isolation of Gate/base drive control in power circuits and what are its limitation? (07 Marks)
 - c. In the power BJT circuit has β in the range of 10 to 25. If $V_{CC} = 230V$, $R_c = 12\Omega$, $V_{BB} = 15V$, $V_{CES} = 1.2V$ and $V_{BES} = 1.8V$. Calculate :
 - i) The value of R_B required to move the transistor into saturation with an ODF of 6.
 - ii) Forced beta β_f
 - iii) Total power dissipation.

(06 Marks)

- 3 a. With a neat sketch, explain the static VI characteristics of an SCR. What are the significances? Define the latching current, holding current and break over voltage. (08 Marks)
 - b. With the help of two transistor model of an SCR, Derive the expression of anode current. Explain the switching action and significance of the Gate control. (08 Marks)
 - c. The SCR in the circuit of Fig Q3(c) has a latching current of 50mA and is triggered by a gate pulse width 50 μ.sec. Show that without resistance R¹ thyristor will fail to remain ON when the gating pulse ends. Also find the maximum value of R¹ to ensure firing. The ON state voltage drop of an SCR can be neglected. (04 Marks)

- 4 a. Define commutation? What are the necessary conditions of commutation? Mention the different types of commutation circuits. (08 Marks)
 - b. With necessary circuit and waveforms, explain complementary commutation scheme.
 Derive an expression for t_c.
 (08 Marks)
 - c. The circuit of Fig Q4(c) employing class –C commutation has $V_s = 200V$, $R_1 = 10\Omega$, $R_2 = 100\Omega$. Determine :
 - i) Peak value of the current through T₁
 - ii) Value of capacitor C, if each thyristor has turn off time of 40 μ.sec. Take factor of safety as 2. (04 Marks)

PART - B

5 a. What is the use of freewheeling diode in the converters? Explain the principle of operat of single phase FWR feeding with R-L loads. Draw the relevant sketch and waveforms.

(07 Mar s.)

- b. With neat circuit and waveforms, explain the working of three phase half wave converges.

 Derive the expression for $V_0(av)$ for resistive load.

 (07 Mar ...)
- c. In the three phase half wave converter has a line line voltage of 415V, 50Hz, the load is purely resistive load with $R = 15\Omega$. If the average load voltage is 50% of maximum possible average output voltage. Determine:
 - i) The delay angle α
 - ii) Average values of output current
 - iii) The average and rms values of thyristor current.

(06 Mar is)

- 6 a. What is chopper? Classify the different types of choppers with circuit diagrams. (06 Mar ss)
 - b. With the help of circuit and quadrilateral diagrams, explain the working of a class E chopper. Mention the devices that give path for the current in each quadrant. (08 Marxil)
 - c. In the chopper circuit of Fig Q6(c). The average output voltage is 109V. The voltage drop across the chopper switch when it is ON is $V_s = 2V$. If the load resistance R = 10.2, f = 1.5 KHz and duty ratio $\delta = 50\%$. Calculate:
 - i) The rms output voltage
 - ii) The dc input to the chopper
 - iii) Chopper efficiency
 - iv) Input resistance of chopper.

(06 Mar 🗤

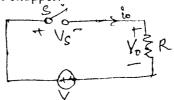


Fig Q6(c)

- 7 a. What do you mean by inverters? Explain the operation of single phase full bridge invertage.

 Draw the load current waveforms for R, R-L load and RLC loads. (08 Mar vs.)
 - b. Explain the operation of a three phase transistorized inverter in 180° conduction angle mode with star connected Resistive load. (08 Mar vs)
 - c. Explain voltage control of single phase inverter by sinusoidal pulse width modulated technique. Draw relevant forms. (04 Mar 3)
- 8 a. What is AC voltage regulator (controller)? With the help of waveforms explain ON-O F control and phase control. (07 Mar ::)
 - b. Explain the operation of a single phase bidirectional controller with resistive load. Obt. In the expression for rms value of output voltage. Show their waveforms. (08 Mars.)
 - c. Write a note on electromagnetic compatibility effect on power electronic converters.

(05 Mar ->)

* * * * *